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A bs t ra c t  

Type A method is the GUM-adopted technique for evaluating the uncertainty of 

repeated observations. Unfortunately, the Type A method cannot provide any 

information about the dispersion of identical observations. This article introduces 

a reasonable approximation for the uncertainty of identical observations depending 

on the resolution of the limited-resolution measuring device and the number of 

identical observations. The proposed approach reduces the estimated uncertainty 

by at least 13.7% of the instrument’s resolution compared to the GUM method 

without sacrificing reliability. Moreover, the proposed approach is simple, 

straightforward, and easily implemented in daily routine work.  

Monte-Carlo simulation was performed to compare the proposed uncertainty 

statement of identical observations against the conventional Type A uncertainty of 

the observations indicated by finer-resolution devices. The simulation revealed that 

the percentage of agreement does not drop below 70% at worst according to the 

strictest criterion; for round-robins’ criterion, the agreement remained above 99%.  

 

Keywords: GUM;  Resolution; Uncertainty; Type A; Monte Carlo. 

 

1 Introduction  

Measurement uncertainty is the key to reflecting the reliability of the measurement result and 

the confidence in decisions taken upon it. Moreover, uncertainty evaluation becomes 

indispensable to most measuring, testing, and calibration standards. In metrological uncertainty 

evaluation, input quantities are quantified either statistically using the Type A evaluation 

method or by scientific judgment using the Type B evaluation method. As a robust technique, 

the Type A uncertainty evaluation method is the Guide to the expression of uncertainty in 

measurement (GUM) [1] adopted methodology for quantifying the uncertainty from repeated 

observations. As a drawback, the result of the Type A method is affected by the limited 

resolution of the used measuring device as the small variations become more and more 
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insensible by the increase of the resolution value until the different independent observations 

become identical. In other cases, the resolution may be adequate for the variations of the 

measurand’s signal but, filtering and averaging the acquired samples make the results 

artificially identical.  In these situations, the Type A method cannot provide any information 

about the uncertainty of the captured values. This ignorance can be a concern, especially in 

high-accuracy measurements and calibrations in which uncertainty can affect a decision or the 

classification of an under-test instrument. In such a case, the metrologist should resort to an 

alternative approach to the Type A method to perform its same role. Till now, there has been 

no agreement on a specific one, and the problem is still an open question in metrology. 

To show the problem from a mathematical perspective, consider a measured quantity q and the 

knowledge about it is limited to a set of n repeated observations q1, q2, …, qn that are 

independently drawn from its respective distribution (with mean 
q

 and variance 2

q
 ) under the 

same measurement conditions. According to the Type A method, the arithmetic average 
n

q  is 

taken as the best available estimate of the mean
q

 and is calculated as:  

                                                        
1

1 n

n i

i

q q
n =

=                                                                 (1) 

This value is considered the best estimate of q and taken as its input estimate in subsequent 

uncertainty models that depend on q.   

Also, the variance 2

q
  is best estimated by the sample variance ( )2

i
s q [2] which is calculated 

as: 

                                                           ( ) ( )
22

1

1

1

n

i i n

i

s q q q
n =

= −
−
                                                     (2) 

Finally, the Type A uncertainty of the quantity q, which is denoted by ( )u q  is taken as the 

positive square root of the experimental variance of the mean ( )2

n
s q  as in Eq. (3); ( )n

s q  is also 

referred to as the experimental standard deviation of the mean.  

                                                       ( ) ( )
( ) ( )2

2 i i

n

s q s q
u q s q

n n
= = =                                            (3) 

When the repeated observations  1 2
, , ...,

n
q q q  are identical, Type A standard uncertainty 

calculated using eq. (3) becomes zero. However, this does not mean that the measurand is 

perfectly known; on the contrary, this indicates that the limited resolution of the measuring 

device cannot distinguish the variations in the measured signal. In other words, a limited 

resolution can result in rounding observations, making them appear artificially identical.  

In subclause F.2.2.1, the GUM addressed the case of identical observations and recommended 

that the uncertainty attributable to repeatability should not be zero (as would result from Eq. 

(3)) but rather equal to 0.29  where   is the resolution of the measuring device (this will be 

referred to as the GUM method). Accordingly, the measured signal is expected to lie in the 

interval  2 , 2X X − + with equal probabilities, where X is the value of the identical 

observations, see Figure 1. In theory, this interpretation has a significant drawback as it assigns 
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the same likelihood to the limits of the interval as its center. In practice, a measured quantity 

varies randomly around its mean, if its mean value lies on one of the interval limits, the 

neighborhood indications of X i.e., X +  or X −  would appear in the observations set. A 

noteworthy here is that the GUM did not classify this approach as a Type A evaluation method 

or a Type B estimation that relies on scientific judgement.    

 

 

Figure 1: The probability density function 
( )f q

 of the quantity 
q

 over the resolution limits of the indication X.  

The literature on evaluating uncertainty in the case of identical observations is minimal. A 

straightforward solution for considering the effect of limited resolution on the uncertainty was 

proposed by Lira and Wöger, 1997 [3]. The idea of this work is to add the term 
2

12  to the 

variance ( )2

i
s q n  in eq. (3). Thus combining the conventional Type A standard uncertainty 

and the resolution standard uncertainty 12  that is taken as the standard deviation of the 

uniform distribution of span equal to the value of   as shown in Figure 1. Accordingly, the 

uncertainty in the case of identical observations becomes equal to 12 . This approach has 

widely resonated, as it is simple, to the extent that the GUM adopted this solution in its 

subclause F.2.2.1 as illustrated. Moreover, Other researchers, such as Elster, 2000 [4], adopted 

this combination to study the uncertainty in case the measured signal suffers from random 

errors combined with analogue-to-digital conversion errors.  

Also, Frenkel and Kirkup, 2005 [5] conducted a Monte Carlo simulation by generating a large 

set of observations and rounded it to mimic the behaviour of measuring devices with limited 

resolution. In that study, and when the observed variance computed from the rounded data was 

equal to zero (i.e., identical observations case), the actual mean value was found to have the 

potential to lie within the resolution limits  2 , 2 − while the observed mean value was equal 

to zero. By assuming a uniform distribution over the expected range  2 , 2 − , the standard 

uncertainty of identical observations proposed by Lira and Wöger 12 was supported, 

despite the theoretical drawbacks of using the uniform distribution for describing identical 
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observations as discussed earlier and as it will be clear later in this article. The solution 

proposed by Lira and Wöger attempts to guess the lost piece of knowledge about the dispersion 

of the observations due to limited resolution. Generally, it may represent a reasonable solution 

despite the evidence that it mixes Type A and Type B evaluation methods that are different in 

their principles [6], which may result in interpretation problems [7, 8]. But, in case of identical 

observations with a value X, as Type A uncertainty vanishes, we implicitly assign the uniform 

distribution over the range  2 , 2X X − +  and calculate Type A uncertainty upon it. Thus, 

the unsuitability of the uniform distribution to Type A uncertainty – specifically in the identical 

case – appears again.     

In practice, there are three inevitable fundamental input quantities in any uncertainty budget: 

Type A uncertainty, i.e., the repeatability, the resolution uncertainty of the measuring device, 

and the calibration uncertainty of the measuring device. Other input quantities may be added 

depending on the nature of the measuring system, Eq. (4).   

                                                            ( )
( )

cal.

2 2

2 2
...

12

i

c

s q
u q u

n


= + + +                                               (4) 

, where, ( )c
u q is the combined standard uncertainty of the quantity q, and 

cal.
u  is the calibration 

standard uncertainty of the used measuring device. As apparent, the resolution uncertainty 
2

12  is indispensable in any uncertainty budget and should exist in the GUM uncertainty 

formula, Eq. (4).  

In practice, there is a particular paradox if we considered the above solution as Eq. (4) would 

be rewritten in that case as:  

                                          ( )
( ) ( )

cal. cal.

2 22 2 2

2 2 2
... 2 ...

12 12 12

i i

c

s q s q
u q u u

n n

     
= + + + + = + + +    

  

                   (5) 

In case of identical observations, Eq. (5) can be simplified as:  

                                                                  ( )
cal.

2

2 2
2 ...

12
c

u q u
 

= + + 
 

                                                 (6) 

Accordingly, and in either case, the resolution uncertainty is double counted. On the other side, 

if the resolution uncertainty is omitted, Eq. (5) would return to be identical to Eq. (4), i.e., the 

classical formula of the GUM uncertainty framework!                 

A question that is often asked is: why take more observations if the measurand is stable and 

the limited resolution measuring device indicates the same value. First, this may be a 

requirement by the standard or the protocol upon which the measurements are taken. For 

example, a series of observations must be taken when calibrating a force-proving instrument 

according to ISO 376:2011 [9], whatever the indicator’s resolution, to assess the system 

characteristics. Another example is when calibrating a dial proving ring according to ASTM 

E74-18e1 [10], three observations must be taken to evaluate its repeatability. Repeated 

measurements may also be taken as confirmation for the identical case; in other words, if the 

first two observations were identical, another one or two can be taken to figure out if different 
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values would appear, then the conventional Type A method can be employed, or the identical 

case is much more confirmed.  

The quantifying of uncertainty in metrology should not be treated as pure math. For each 

uncertainty source, scientific judgment is vital in determining the limits of the uncertainty 

interval and specifying the probabilities of its values. While the requirement of scientific 

judgment is evident in the Type B evaluation method, its role in the Type A evaluation method 

is excluded implicitly in GUM and GUM-based uncertainty guides in which the observations 

are considered the only available knowledge about the measurand. This position is arguably 

unscientific [11] as the metrologist can provide other relevant information that may amend the 

uncertainty value. In this article, when the conventional Type A method cannot give any 

information about the dispersion of a set of identical observations, a reasonable guess of its 

standard uncertainty is proposed based on a new interpretation for the case of the identical 

observation. The proposed solution significantly reduces the estimated uncertainty compared 

to the GUM method without sacrificing the reliability of the proposed uncertainty statement. 

Moreover, it is simple, straightforward, and easily implemented in laboratories’ daily routine 

work.  

2 Type A Uncertainty in Light of the Central Limit Theorem     

The Central Limit Theorem (CLT) forms an essential basis for inferential statistics. According 

to CLT, if samples of size n are taken from a population of a random quantity q  that has a 

mean 
q

 and variance 2

q
 , the sampling distribution of sample means ˆ

n
q  (i.e., the probability 

distribution of sample means) would follow a normal distribution with expectation  ˆ
n q

E q =

and variance   2ˆVar
n q

q n= , i.e., ( )2ˆ ,
n q q

q N n  .This theorem is applied either when the 

population has any form, but the sample size n is relatively large ( 30n  ) or the population is 

normally distributed regardless of n. 

When interpreting the philosophy of the Type A uncertainty evaluation method, it becomes 

apparent that it aims to reconstruct the sampling distribution of sample means of the quantity 

q by the sample variance available in hand n
q . Figure 2 illustrates this idea; Figure 2.a shows 

the unknown probability distribution of the quantity q that follows the normal form with an 

unknown expectation 
q

  and unknown variance 
2

q
 ; Figure 2.b also shows its respective 

unknown sampling distribution that also follows the normal form with an expectation 
q

  and 

variance 
2

q
n , this sampling distribution gives the probability of the random variable ˆ

n
q that 

is the sample mean of sample size n. 
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Figure 2: The steps of reconstructing the sampling distribution of sample means of the quantity q. (a) The 

distribution of q, (b) The sampling distribution of q, (c) The reconstructed sampling distribution of q, (d) The 

distribution of the sampling error of sample means.   

For reconstructing the sampling distribution, the sample variance 
( )2

i
s q

 , as calculated in Eq. 

(2) is taken as the best estimator of the population parameter 
2

q


 [12]. The question now is: to 

what extent does the value of the sample mean n
q  estimate the parameter q


? In other words, 

how much is the error n
e

 (Figure 2.c) between n
q  and q


? This error, which is known as the 

sampling error, when estimated, would be considered as the uncertainty associated with n
q ; 

this is consistent with the fundamental concept of uncertainty that states that errors with 

unknown values (because here, q


 is unknown) are uncorrectable and considered as the sources 

of uncertainty [13, 14].    

As the sample mean 
ˆ

n
q

is a random variable, the sampling error 
ˆ

n
e

 is also a random variable 

that can be calculated as: 

                                                                      ˆ ˆ
n n q

e q = −                                                          (7) 

Thus, the distribution of the sampling error (Figure 2.d) would follow the normal form with an 

expectation equal to zero and with the same variance of 
ˆ

n
q

, i.e., 
( )2

i
s q n

. Accordingly, the 

standard uncertainty associated with n
q , i.e., the standard uncertainty of Type A can be 

considered as the standard deviation 
( )i

s q n
 of the reconstructed sampling distribution, and 

this value can be expanded using the coverage factors of the normal distribution [14].  

The following are some notes about the philosophy of the Type A uncertainty method in light 

of the above explanation and the CLT:  
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• The sampling distribution of sample means (Figure 2.b) is always considered Gaussian, 

necessitating that the measurand q must have the Gaussian form. The reason is that the 

number of repeated observations upon which the sampling distribution is reconstructed 

is always relatively small, say three or five, in most metrological applications [15]. 

Accordingly, and as long as the number of repeated observations is less than thirty, 

there is no guarantee for the sampling distribution’s normality except the normality of 

the quantity q. This is also supported from a physical perspective as the noise 

responsible for repeated measurements dispersion is usually considered Gaussian, even 

the unavoidable electrical noise coming from analogue-to-digital conversion circuits 

[16, 17].      

• The expectation of the distribution of the sampling error  ˆ 0
n

E e =  (Figure 2.d), this 

means that there is no bias in the measurement result. Accordingly, no correction should 

be applied to the measurement result, which can be considered a merit of the Type A 

method.   

• n
q as calculated per Eq. (1) is not itself a random variable; it is an outcome of the 

random variable ˆ
n

q , so the term ( )2

n
s q  in Eq.(3) becomes more precise if written as 

( )2 ˆ
n

s q .    

The span of the standard uncertainty interval ( )2
i

s q n 
 

 is symmetrical about 
q

  (Figure 

2.c), not about n
q . Nevertheless, as n

q  is the available estimator of 
q

 , it is considered as the 

result of the measurement as well as the center point of the span ( )2
i

s q n 
 

.  

3 A new interpretation for identical observations case     

The idea of the current paper is to guess the term ( )i
s q  in case of identical observations 

depending on the available knowledge implied in that case and keep using Eq. (4) of the GUM 

method without modifications. The proposed point of view depends on the following 

reasonable assumptions:  

• The identical observations are drawn from a normal distribution; this is a fundamental 

assumption of the Type A evaluation method, as illustrated in the previous section.  

• As the domain of the normal distribution ranges from −  to + , we must consider a 

truncated normal distribution that entirely lies in the X-indication interval. Accordingly, 

it is assumed that the truncated domain of the observations’ normal distribution is 

entirely within the interval  2 , 2X X − + , where n
X q=  is the value of the 

identical observations and their mean, and  is the resolution of the measuring device. 

This assumption is necessary for the identical case; otherwise, neighborhood 

indications of X would exist in the set of observations.  

• The expectation of the observations’ distribution is not necessarily equal to X , while 

the maximum expected span width of the distribution’s domain (truncated) depends on 



Journal of Measurement Science & Applications, JMSA. Vol (5) Issue (1) Feb. (2025) 

 

 

30 

the location of that expectation concerning X . As obvious in Figure 3, when the 

expectation of distribution B becomes 
n

q
  instead of n

X q= , its maximum expected 

span width B
w  is shortened concerning the maximum expected span width of 

distribution A, A
w , which has an expectation n

q . As 
n

q
  gets farther away from n

X q=  

as its maximum expected span width becomes narrower to keep the identical condition 

and prevent neighbourhood indications of X  from appearing.          

As evident in Figure 3, the maximum expected span width is achieved in case the expected 

value of the observations’ distribution n
q  is equal X as apparent in distribution A; thus, it can 

be considered as the measurement result; once again, this is also a merit as there is no need for 

a correction in the measurement result. In that case, the maximum expected span width 

( ) ( )A
2 2w X X  = + − − = . For calculating the standard deviation of the observations’ 

distribution, A
w  is assumed to be equal to ( )6.6

n i
s q , where ( )n i

s q  is the standard deviation 

of distribution A in Figure 3; this means that the percentage of the area of the distribution 

encompassed between the limits 2X −  and 2X +  equals 99.9%; thus, 

                                                ( ) ( )A
6.6

6.6
n i n i

w s q s q


= = → =                                          (8) 

 

 

Figure 3: The expected probability distribution of identical observations. 

The standard deviation ( )n i
s q  of distribution A is guessed as it is calculated from the n 

identical observations. For estimating the standard deviation of the observations’ population, 

the value of the variance ( )2

n i
s q , the square of the standard deviation ( )n i

s q , calculated per 
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eq. (8), is factorized by the quantity ( )1n n − ; this can be considered as the sample variance 

( )2

1n i
s q

−
 of the observations and can be calculated as:  

                                              ( )
( )

2 2

2

1
; 1

1 6.6 43.56 1
n i

n n
s q n

n n

 
−

 
=  =  

− − 
                              (9)     

Finally, in case of identical observations, eq. (3) can be rewritten as:  

                                                         ( )
1 6.6

; 1
6.6 1

n

n
u q n

n n





 
  − 

= = 
−

                                         (10) 

Accordingly, in case of identical observations, eq. (4) of the GUM uncertainty framework can 

be rewritten as:  

                                ( )
( )cal. cal.

2 2 2 2

2 2 2
... ...; 1

12 43.56 1 126.6 1
c

u q u u n
nn

    
= + + + = + + +  

 −− 
                (11) 

In Figure 4, the standard uncertainty as per eq. (10) is plotted versus the number of identical 

observations at different resolution values. As apparent, the uncertainty decreases with the 

decrease in resolution, and this is because the observations’ distribution span width becomes 

narrower with the reduction of the resolution. Additionally, at a certain resolution value, the 

uncertainty decreases by the increase of the number of identical observations n, that is because 

the standard deviation of the reconstructed sampling distribution – evaluated via dividing by 

n  in Eq. (10) – upon which the uncertainty is evaluated decreases by the increase of n. In 

other words, this can be interpreted as by the increase of n, the sampling error decreases, and 

the confidence in X as an estimator of q


 increases. The same question can be reformulated 

from a different perspective: what knowledge is gained by a further identical observation that 

decreases uncertainty. The answer is simple: it is a memory feature of the proposed 

approximation; as the new observation confirms the identical case, the uncertainty associated 

with the measurement result decreases.  

 

Figure 4: The standard uncertainty of identical observations as per Eq. (10), plotted at different resolution values. 
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If the uncertainty values in Figure 4 are compared to their counterparts calculated as specified 

in GUM-Subclause F.2.2.1, it would be found that the difference between the values 12

and 6.6 1n − is always positive. As shown in Figure 5, the difference is minimum at n=2 and 

equals 13.7% of the value of  and increases steadily until it reaches its maximum value at 

n=10 with 23.8% of the value of  . Thus, a reasonable significant reduction in the uncertainty 

compared to the GUM method is achieved. 

 

Figure 5: The reduction percentage in the resolution uncertainty value compared to the GUM method at different 

values of n.   

Practically, by considering the proposed approach, a rational estimation of the standard 

uncertainty of identical observations can be achieved with a significant reduction compared to 

the GUM method. Someone might see this approach as an extension to the Type A method as 

it mimics its respective steps in reconstructing the sampling distribution of sample means of 

the measured quantity; someone else might see it as a Type B method as it depends on scientific 

judgment. Either way, the GUM considered the same tactic and introduced a similar approach 

– depending on scientific judgement – to solve the problem of Type A identical observations 

in subclause F.2.2.1, as discussed in the introduction. In theory, the proposed approach might 

be considered as a “Type B estimation for a Type A indeterminate case.” It is noteworthy here 

that the proposed uncertainty statement in Eq. (10) is just a rational approximation for the 

uncertainty of identical observations. It should not be treated as a result of an analytical 

derivation for solving a statistical problem. Accordingly, an assessment of its results from a 

metrological point of view should be performed before its implementation, as discussed in the 

next section.  

4 Metrological assessments of the proposed standard uncertainty statement of 

identical observations     

For assessing the proposed statement of the uncertainty of identical observations from a 

metrological perspective, a hypothetical error-free measuring device with limited resolution 



Journal of Measurement Science & Applications, JMSA. Vol (5) Issue (1) Feb. (2025) 

 

 

33 

1 =  measuring a Gaussian signal in the interval  0.5, 0.5X X− +  with expectation n
X q=  

(taken arbitrarily equal to 15.00) and standard deviation 1 6.6 , is compared against a set of 

other hypothetical error-free measuring devices measuring the same signal but with finer 

resolution  . The agreement between the results is assessed as follows [18]:  

Consider the measurement result of the measuring device with limited resolution is n
X q=  

and is n
q  for the device with finer resolution; accordingly, the absolute difference between the 

two values 
n n

q q = − . Also, consider the expanded uncertainty of the measuring device with 

limited resolution ( )( )L
2 6.6 1U n= −  while the Type A expanded uncertainty for the device 

with finer resolution ( )( )F
2

i
U s q n= . 

Agreement Criterion 1 (AC1): The first criterion confirms the agreement between two 

measuring systems if the absolute difference between their measurement results is less than or 

equal to the minimum of their expanded uncertainties, i.e., ( )L F
min ,U U  .        

Agreement Criterion 2 (AC2): The second criterion confirms the agreement between two 

measuring systems if the absolute difference between their measurement results is less than or 

equal to the root sum of squares (RSS) of their expanded uncertainties, i.e., 2 2

L F
U U  + .   

On the one hand, AC1 represents the ultimate agreement grade according to the American 

Society of Mechanical Engineers ASME B89.7.3.3 standard [18], which is devoted to assessing 

the reliability of uncertainty statements. On the other hand, AC2 is commonly considered as 

the agreement criterion between laboratories in round robins. It is noteworthy here that AC1 is 

stricter if compared to AC2. 

Monte-Carlo computer simulation software was developed to mimic the behaviour of the 

hypothetical measuring devices used for the assessment. The simulation software generates a 

Gaussian random sample of controllable size n (n = 2, 3, …, 10) with expectation 15.00
n

q =  

and standard deviation equal to 1/6.6. The elements of the generated sample are rounded to the 

nearest digit allowed by the resolution   of the hypothetical finer-resolution device; in the 

simulation, six hypothetical finer-resolution measuring devices with different resolutions 

10 = where 1, 2, ..., 6= − − −  were considered. Then, the mean value and Type A expanded 

uncertainty of the sample i.e., 
n

q  and 
F

U  respectively, are calculated. After that, the agreement 

between the results of the limited-resolution device ( )L
,

n
q U  and the results of the finer-

resolution device ( )F
,

n
q U  is checked using the agreement criteria AC1 and AC2. After running 

the simulation for 6
10  trials, the number of positive agreements recorded for both AC1 and 

AC2 is obtained, and its percentage relative to the total number of trials is calculated. Pilot tests 

were also conducted to ensure that the obtained results are not limited to the tested resolutions, 

and depend mainly on the ratio   where   =  and 10


 = as long as 1 − , while 

 and 0
−

  ; in the current assessment 0
10  = = . The simulation results are plotted as 

the percentage of positive agreements at different   values versus the number of identical 

observations for AC1 in Figure 6 and for AC2 in Figure 7.  
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For AC1 (Figure 6), as clear, the general trend of the set of curves is the increase of the 

agreement percentage by the increase of the number of identical observations. This can be 

explained as follows: by the increase in the number of observations, the mean value 
n

q  gets 

closer to 
n

q ; consequently, the value of   decreases, which results in more agreements when 

  compared to the minimum of 
L

U  and 
F

U . As evident, the minimum percentage of agreement 

of AC1 does not drop below 70% at worst. For most metrological practices, when three 

observations are recommended, the agreement percentage gets above 80%; if the number of 

observations is raised to five, the agreement percentage approaches 87%.  

 

Figure 6: The percentage of positive agreement of AC1, ( )( )L
2 6.6 1U n= − . 

 

Figure 7: The percentage of positive agreement of AC2, ( )( )L
2 6.6 1U n= − . 
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For AC2 (Figure 7), the agreement percentages for the set of curves are relatively stable, and 

its variations are within a margin of width of less than 0.6%. At the same time, the agreement 

percentage remains 99% at worst.  

Finally, it is apparent from Figure 6 and Figure 7 that the curves with 0.01   are quite 

identical. So, it can be concluded that using a relatively very fine resolution measuring device 

with 0.01   would increase the measurement cost without positively affecting the agreement 

percentage between them.  

The simulation was extended to determine the agreement percentage of AC1 and AC2 if the 

GUM method was used instead of the proposed statement. Accordingly, all simulation settings 

were left as they were except for the value of 
L

U was set equal to 2 12 . The agreement 

percentages of AC1 are plotted in Figure 8, while the agreement percentages of AC2 were 

100% at all simulated points.  

 

Figure 8: The percentage of positive agreement of AC1, L
2 12U = . 

When comparing Figure 6 with Figure 8, it would be clear that the results are nearly the same. 

This means that the critical parameter in determining the agreement percentage of AC1 is F
U , 

i.e., F
U  is usually the minimum when compared to L

U .This indicates that the Type A 

uncertainty calculated in the traditional way is actually less than the inferred value 12 . So, 

it would be recommended to reduce the inferred value – based on rational assumptions – to get 

close to the traditional Type A value. This emphasizes the reasonability of the proposed 

uncertainty statement that could decrease the inferred value of identical observations without 

sacrificing the agreement percentage. This indicates that the inferred value did not drop below 

the traditional Type A uncertainty limit, which confirms the reliability of the proposed 

uncertainty statement.    

For AC2, although the differences are trivial, they are expected. As setting 
L

U  equal to 2 12  

which is always greater than ( )( )2 6.6 1n − , would result in larger values of their root sum of 

squares. This means more agreements when compared to  .   
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5 Case study: Calibration of force transducers according to ISO 376      

According to ISO 376:2011 [9, 19], the relative repeatability uncertainty 
3

w  contributes to the 

classification of force transducers while it is calculated as:  

                                                             
( )

2 1

1 2

3

2

3

X X

X X
w

−

+
=                                                     (12) 

while X1 and X2 are the obtained deflections in series 1 and 2 respectively, i.e., without rotating 

the transducer. From Eq. (12), it is obvious that the uncertainty evaluation philosophy considers 

the absolute difference 
2 1

X X−  as the half range above which a uniform distribution is 

assigned.  

When X1 and X2 are identical and equal to X, the value of 
3

0w = . In this case, two possible 

solutions can be applied to guess the value of 
3

w . First, it can be considered that the absolute 

difference between X1 and X2 equals the resolution of the system indicator  , and still, apply 

the uniform distribution according to the equation:  

                                                                        
( )

3

3

X
w


=                                                          (13) 

The second choice is adopting the proposed philosophy in this article and considering that the 

variations in readings are owed to Gaussian disturbances. Accordingly, Eq. (10) can be 

reformulated to suit the application as follows:       

                                                                         
( )

3
6.6

X
w


=                                                     (14) 

Thus, the reduction percentage obtained using Eq. (14) instead of Eq. (13) is approximately 

73.75%, which can substantially affect the classification of the under-calibration transducer.  

 

6 Conclusion       

This article proposes a new approach for estimating the standard uncertainty of identical 

observations. The proposed approach considers the resolution of the measuring device and the 

number of identical observations in the estimation process. As merits, the proposed approach 

reasonably reduces the estimated uncertainty compared to the GUM method by at least 13.7% 

of the instrument’s resolution without sacrificing the reliability of the proposed uncertainty 

statement. Moreover, it is simple, straightforward, and suitable to implement in laboratories’ 

daily routine work. It was observed that the proposed uncertainty estimation decreases when 

the resolution of the measuring device decreases, or the number of identical observations 

increases. Based on the metrological assessment, when comparing the results of the proposed 

approach for identical observations of limited-resolution devices to the conventional Type A 

method calculated for finer-resolution devices, it was found that the agreement percentage did 



Journal of Measurement Science & Applications, JMSA. Vol (5) Issue (1) Feb. (2025) 

 

 

37 

not drop below 70% at worst for the strictest criterion. For the common round-robins’ criterion, 

the agreement percentage remained above 99%, confirming the proposed approach’s validity.  

Furthermore, it was noted that improving the resolution of the finer-resolution measuring 

device by more than 10-2 of the resolution of the limited-resolution device does not significantly 

affect the agreement percentage between them.   
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